2021 (2)
Voiko 3d-tulostuksessa kytetyist muovimateriaaleista valmistettuja astioita käyttää solujen viljelyssä?. Bask, P.; Pouta, R.; and Siljander, O. Technical Report Käpylän Peruskoulu, Helsinki, 2021.
Voiko 3d-tulostuksessa kytetyist muovimateriaaleista valmistettuja astioita käyttää solujen viljelyssä? [pdf]Paper   bibtex  
Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs. Künnapuu, J.; Bokharaie, H.; and Jeltsch, M. Biology, 10(2): 167. February 2021.
Paper   doi   bibtex   abstract  
  2020 (5)
Generating a fluorescence-tagged growth factor for in vivo detection and localization. Rosich Just, P. Technical Report University of Barcelona, Barcelona, September 2020.
bibtex  
Lymphatics and the eye. [Finnish]. Gucciardo, E.; Lehti, T. A.; Korhonen, A.; Salvén, P.; Lehti, K.; Jeltsch, M.; and Loukovaara, S. Duodecim Lääketieteellinen Aikakauskirja, 136(16): 1777–88. August 2020.
Lymphatics and the eye. [Finnish] [link]Paper   doi   bibtex   abstract  
VEGF-C protects the integrity of the bone marrow perivascular niche in mice. Fang, S.; Chen, S.; Nurmi, H.; Leppänen, V.; Jeltsch, M.; Scadden, D.; Silberstein, L.; Mikkola, H.; and Alitalo, K. Blood, 136(16): 1871–1883. October 2020.
doi   bibtex   abstract  
Investigation on the Role of Biallelic Variants in VEGF-C Found in a Patient Affected by Milroy-like Lymphedema. Mukenge, S.; Jha, S. K.; Catena, M.; Manara, E.; Leppänen, V.; Lenti, E.; Negrini, D.; Bertelli, M.; Brendolan, A.; Jeltsch, M.; and Aldrighetti, L. Molecular Genetics & Genomic Medicine, 8(9): e1389. June 2020.
Investigation on the Role of Biallelic Variants in VEGF-C Found in a Patient Affected by Milroy-like Lymphedema [link]Paper   doi   bibtex  
Mechanism of VEGF-C Activation and Effect on Lymphatic Vessel Growth and Regeneration. Jha, S. K. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, May 2020. Accepted: 2020-05-07T05:17:24Z ISBN: 9789515160454 Publisher: Helsingin yliopisto
Mechanism of VEGF-C Activation and Effect on Lymphatic Vessel Growth and Regeneration [link]Paper   bibtex   abstract  
  2019 (2)
The Proteolytic Activation of Vascular Endothelial Growth Factor-C. Lackner, M.; Schmotz, C.; and Jeltsch, M. Lymphologie in Forschung und Praxis, 23(2): 88–98. December 2019. https://www.dglymph.de/fileadmin/user_upload/Lymph_02-19_online.pdf
The Proteolytic Activation of Vascular Endothelial Growth Factor-C [link]Paper   doi   bibtex  
KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D. Jha, S. K.; Rauniyar, K.; Chronowska, E.; Mattonet, K.; Maina, E. W.; Koistinen, H.; Stenman, U.; Alitalo, K.; and Jeltsch, M. eLife, 8: e44478. May 2019.
KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D [link]Paper   doi   bibtex   abstract  
  2018 (3)
Was man in der Lymphologie über VEGF-C wissen sollte [What you need to know as a lymphologist about VEGF-C]. Jeltsch, M. Vasomed, 30(4): 172–173. July 2018.
Was man in der Lymphologie über VEGF-C wissen sollte [What you need to know as a lymphologist about VEGF-C] [link]Paper   bibtex  
Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels. Rauniyar, K.; Jha, S. K.; and Jeltsch, M. Frontiers in Bioengineering and Biotechnology, 6: 7. February 2018.
Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels [link]Paper   doi   bibtex   abstract  
Key molecules in lymphatic development, function, and identification. Jha, S. K.; Rauniyar, K.; and Jeltsch, M. Annals of Anatomy - Anatomischer Anzeiger, 219: 25–34. September 2018.
Key molecules in lymphatic development, function, and identification [link]Paper   doi   bibtex   abstract  
  2017 (1)
Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1. Jha, S. K.; Rauniyar, K.; Karpanen, T.; Leppänen, V.; Brouillard, P.; Vikkula, M.; Alitalo, K.; and Jeltsch, M. Scientific Reports, 7(1): 4916. July 2017.
Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1 [link]Paper   doi   bibtex   abstract  
  2015 (4)
Heterogeneity of the origin of the lymphatic system. [German]. Mattonet, K.; and Jeltsch, M. Lymphologie in Forschung und Praxis, 19(2): 84–88. December 2015.
Heterogeneity of the origin of the lymphatic system. [German]. [pdf]Paper   doi   bibtex   abstract  
Die genetischen Ursachen des primären Lymphödems. Mattonet, K.; Wilting, J.; and Jeltsch, M. In Weissleder, H.; and Schuchhardt, C., editor(s), Erkrankungen des Lymphgefäßsystems, pages 210–229. Viavital Verlag, Cologne, Germany, 6. edition, August 2015.
Die genetischen Ursachen des primären Lymphödems [pdf]Paper   bibtex   abstract  
Substrate Efflux Propensity Is the Key Determinant of Ca2+-independent Phospholipase A-β (iPLAβ)-mediated Glycerophospholipid Hydrolysis. Batchu, K. C.; Hokynar, K.; Jeltsch, M.; Mattonet, K.; and Somerharju, P. Journal of Biological Chemistry, 290(16): 10093–10103. April 2015.
Substrate Efflux Propensity Is the Key Determinant of Ca2+-independent Phospholipase A-β (iPLAβ)-mediated Glycerophospholipid Hydrolysis [link]Paper   doi   bibtex   abstract  
Functional Dissection of the CCBE1 Protein. A Crucial Requirement for the Collagen Repeat Domain. Roukens, M. G.; Peterson-Maduro, J.; Padberg, Y.; Jeltsch, M.; Leppänen, V.; Bos, F. L.; Alitalo, K.; Schulte-Merker, S.; and Schulte, D. Circulation Research, 116(10): 1660–1669. May 2015.
Functional Dissection of the CCBE1 Protein. A Crucial Requirement for the Collagen Repeat Domain [link]Paper   doi   bibtex   abstract  
  2014 (2)
CCBE1 Enhances Lymphangiogenesis via A Disintegrin and Metalloprotease With Thrombospondin Motifs-3–Mediated Vascular Endothelial Growth Factor-C Activation. Jeltsch, M.; Jha, S. K.; Tvorogov, D.; Anisimov, A.; Leppänen, V.; Holopainen, T.; Kivelä, R.; Ortega, S.; Kärpanen, T.; and Alitalo, K. Circulation, 129(19): 1962–1971. May 2014.
CCBE1 Enhances Lymphangiogenesis via A Disintegrin and Metalloprotease With Thrombospondin Motifs-3–Mediated Vascular Endothelial Growth Factor-C Activation [link]Paper   doi   bibtex   abstract  
The disease they call fat - scientist/researcher episode 9: Michael Jeltsch. Jeltsch, M. March 2014. https://www.imdb.com/title/tt5212746/
The disease they call fat - scientist/researcher episode 9: Michael Jeltsch [link]Paper   bibtex  
  2013 (7)
Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Leppänen, V.; Tvorogov, D.; Kisko, K.; Prota, A. E.; Jeltsch, M.; Anisimov, A.; Markovic-Mueller, S.; Stuttfeld, E.; Goldie, K. N.; Ballmer-Hofer, K.; and Alitalo, K. Proceedings of the National Academy of Sciences of the United States of America, 110(32): 12960–12965. August 2013.
Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation [link]Paper   doi   bibtex   abstract  
Die lymphangiogenen Wachstumsfaktoren VEGF-C und VEGF-D. Teil 2. Die Rolle von VEGF-C und VEGF-D bei Krankheiten des Lymphgefäßsystems. Krebs, R.; and Jeltsch, M. Lymphologie in Forschung und Praxis, 17(2): 96–104. December 2013.
Die lymphangiogenen Wachstumsfaktoren VEGF-C und VEGF-D. Teil 2. Die Rolle von VEGF-C und VEGF-D bei Krankheiten des Lymphgefäßsystems. [pdf]Paper   doi   bibtex   abstract  
Die lymphangiogenen Wachstumsfaktoren VEGF-C und VEGF-D. Teil 1. Grundlagen und Embryonalentwicklung. Krebs, R.; and Jeltsch, M. Lymphologie in Forschung und Praxis, 17(1): 30–37. June 2013.
Die lymphangiogenen Wachstumsfaktoren VEGF-C und VEGF-D. Teil 1. Grundlagen und Embryonalentwicklung. [pdf]Paper   doi   bibtex   abstract  
The lymphangiogenic growth factors VEGF-C and VEGF-D. Part 1: Fundamentals and embryonic development. Krebs, R.; and Jeltsch, M. Vasomed, 25(6): 335–336. June 2013.
The lymphangiogenic growth factors VEGF-C and VEGF-D. Part 1: Fundamentals and embryonic development [link]Paper   bibtex  
The Basis for the Distinct Biological Activities of Vascular Endothelial Growth Factor Receptor-1 Ligands. Anisimov, A.; Leppanen, V.; Tvorogov, D.; Zarkada, G.; Jeltsch, M.; Holopainen, T.; Kaijalainen, S.; and Alitalo, K. Science Signaling, 6(282): ra52. July 2013.
The Basis for the Distinct Biological Activities of Vascular Endothelial Growth Factor Receptor-1 Ligands [link]Paper   doi   bibtex  
Vascular Endothelial Growth Factor-Angiopoietin Chimera With Improved Properties for Therapeutic AngiogenesisClinical Perspective. Anisimov, A.; Tvorogov, D.; Alitalo, A.; Leppänen, V.; An, Y.; Han, E. C.; Orsenigo, F.; Gaál, E. I.; Holopainen, T.; Koh, Y. J.; Tammela, T.; Korpisalo, P.; Keskitalo, S.; Jeltsch, M.; Ylä-Herttuala, S.; Dejana, E.; Koh, G. Y.; Choi, C.; Saharinen, P.; and Alitalo, K. Circulation, 127(4): 424–434. January 2013.
Vascular Endothelial Growth Factor-Angiopoietin Chimera With Improved Properties for Therapeutic AngiogenesisClinical Perspective [link]Paper   doi   bibtex   abstract  
A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development. Villefranc, J. A.; Nicoli, S.; Bentley, K.; Jeltsch, M.; Zarkada, G.; Moore, J. C.; Gerhardt, H.; Alitalo, K.; and Lawson, N. D. Development, 140(7): 1497–1506. January 2013. Self-archived version available from here: https://jeltsch.org/Villefranc2013 \textlessa href="https://jeltsch.org/Villefranc2013"\textgreaterLink\textless/a\textgreater
A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development [link]Paper   doi   bibtex  
  2011 (2)
Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Leppänen, V.; Jeltsch, M.; Anisimov, A.; Tvorogov, D.; Aho, K.; Kalkkinen, N.; Toivanen, P.; Ylä-Herttuala, S.; Ballmer-Hofer, K.; and Alitalo, K. Blood, 117(5): 1507–1515. February 2011.
Structural determinants of vascular endothelial growth factor-D receptor binding and specificity [link]Paper   doi   bibtex   abstract  
VEGF-C/VEGFR-3 Signaling Regulates Inflammatory Response in Development of Obliterative Airway Disease. Krebs, R.; Tikkanen, J. M.; Ropponen, J. O.; Jeltsch, M.; Jokinen, J. J.; Yla-Herttuala, S.; Koskinen, P. K.; Nykanen, A. I.; and Lemstrom, K. B. Journal of Heart and Lung Transplantation, 30(4): S118–S118. March 2011. undefined APR 2011 VEGF-C/VEGFR-3 Signaling Regulates Inflammatory Response in Development of Obliterative Airway Disease WOS:000288924300340
VEGF-C/VEGFR-3 Signaling Regulates Inflammatory Response in Development of Obliterative Airway Disease [link]Paper   bibtex   abstract  
  2010 (5)
Structural determinants of growth factor binding and specificity by VEGF receptor 2. Leppänen, V.; Prota, A. E.; Jeltsch, M.; Anisimov, A.; Kalkkinen, N.; Strandin, T.; Lankinen, H.; Goldman, A.; Ballmer-Hofer, K.; and Alitalo, K. Proceedings of the National Academy of Sciences of the United States of America, 107(6): 2425–2430. February 2010.
Structural determinants of growth factor binding and specificity by VEGF receptor 2 [link]Paper   doi   bibtex   abstract  
Vascular Endothelial Growth Factor-B Acts as a Coronary Growth Factor in Transgenic Rats Without Inducing Angiogenesis, Vascular Leak, or Inflammation. Bry, M.; Kivelä, R.; Holopainen, T.; Anisimov, A.; Tammela, T.; Soronen, J.; Silvola, J.; Saraste, A.; Jeltsch, M.; Korpisalo, P.; Carmeliet, P.; Lemström, K. B.; Shibuya, M.; Ylä-Herttuala, S.; Alhonen, L.; Mervaala, E.; Andersson, L. C.; Knuuti, J.; and Alitalo, K. Circulation, 122(17): 1725–1733. October 2010.
Vascular Endothelial Growth Factor-B Acts as a Coronary Growth Factor in Transgenic Rats Without Inducing Angiogenesis, Vascular Leak, or Inflammation [link]Paper   doi   bibtex   abstract  
Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Tvorogov, D.; Anisimov, A.; Zheng, W.; Leppänen, V.; Tammela, T.; Laurinavicius, S.; Holnthoner, W.; Heloterä, H.; Holopainen, T.; Jeltsch, M.; Kalkkinen, N.; Lankinen, H.; Ojala, P. M; and Alitalo, K. Cancer Cell, 18(6): 630–640. December 2010.
Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization [link]Paper   doi   bibtex   abstract  
Suppressive Effects of Vascular Endothelial Growth Factor-B on Tumor Growth in a Mouse Model of Pancreatic Neuroendocrine Tumorigenesis. Albrecht, I.; Kopfstein, L.; Strittmatter, K.; Schomber, T.; Falkevall, A.; Hagberg, C. E.; Lorentz, P.; Jeltsch, M.; Alitalo, K.; Eriksson, U.; Christofori, G.; and Pietras, K. PLoS ONE, 5(11): e14109. November 2010. undefined NOV 24 2010 Suppressive Effects of Vascular Endothelial Growth Factor-B on Tumor Growth in a Mouse Model of Pancreatic Neuroendocrine Tumorigenesis 10.1371/journal.pone.0014109 WOS:000284572000011
Suppressive Effects of Vascular Endothelial Growth Factor-B on Tumor Growth in a Mouse Model of Pancreatic Neuroendocrine Tumorigenesis [link]Paper   bibtex  
Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Saharinen, P.; Helotera, H.; Miettinen, J.; Norrmen, C.; D'Amico, G.; Jeltsch, M.; Langenberg, T.; Vandevelde, W.; Ny, A.; Dewerchin, M.; Carmeliet, P.; and Alitalo, K. Genes & Development, 24(9): 875–880. March 2010. undefined MAY 1 2010 Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development 10.1101/gad.565010 WOS:000277244100004
Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development [link]Paper   bibtex  
  2009 (1)
Activated Forms of VEGF-C and VEGF-D Provide Improved Vascular Function in Skeletal Muscle. Anisimov, A.; Alitalo, A.; Korpisalo, P.; Soronen, J.; Kaijalainen, S.; Leppänen, V.; Jeltsch, M.; Ylä-Herttuala, S.; and Alitalo, K. Circulation Research, 104(11): 1302–1312. June 2009.
Activated Forms of VEGF-C and VEGF-D Provide Improved Vascular Function in Skeletal Muscle [link]Paper   doi   bibtex   abstract  
  2008 (3)
The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Heckman, C. A.; Holopainen, T.; Wirzenius, M.; Keskitalo, S.; Jeltsch, M.; Yla-Herttuala, S.; Wedge, S. R.; Jurgensmeier, J. M.; and Alitalo, K. Cancer Research, 68(12): 4754–4762. June 2008. undefined JUN 15 2008 The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis 10.1158/0008-5472.CAN-07-5809 WOS:000256855700034
The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis [link]Paper   bibtex  
Overexpression of Vascular Endothelial Growth Factor-B in Mouse Heart Alters Cardiac Lipid Metabolism and Induces Myocardial Hypertrophy. Karpanen, T.; Bry, M.; Ollila, H. M.; Seppanen-Laakso, T.; Liimatta, E.; Leskinen, H.; Kivela, R.; Helkamaa, T.; Merentie, M.; Jeltsch, M.; Paavonen, K.; Andersson, L. C.; Mervaala, E.; Hassinen, I. E.; Yla-Herttuala, S.; Oresic, M.; and Alitalo, K. Circulation Research, 103(9): 1018–U247. October 2008. undefined OCT 24 2008 Overexpression of Vascular Endothelial Growth Factor-B in Mouse Heart Alters Cardiac Lipid Metabolism and Induces Myocardial Hypertrophy 10.1161/CIRCRESAHA.108.178459 WOS:000260308500018
Overexpression of Vascular Endothelial Growth Factor-B in Mouse Heart Alters Cardiac Lipid Metabolism and Induces Myocardial Hypertrophy [link]Paper   bibtex  
Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Li, X.; Tjwa, M.; Van Hove, I.; Enholm, B.; Neven, E.; Paavonen, K.; Jeltsch, M.; Juan, T. D.; Sievers, R. E; Chorianopoulos, E.; Wada, H.; Vanwildemeersch, M.; Noel, A.; Foidart, J.; Springer, M. L; von Degenfeld, G.; Dewerchin, M.; Blau, H. M; Alitalo, K.; Eriksson, U.; Carmeliet, P.; and Moons, L. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(9): 1614–1620. September 2008.
Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium [link]Paper   doi   bibtex   abstract  
  2007 (1)
Inhibition of VEGF-C-induced VEGFR-3 activity and lymphatic endothelial cell function by the tyrosine kinase inhibitor AZD2171. Heckman, C. A.; Holopainen, T.; Wirzenius, M.; Keskitalo, S.; Jeltsch, M.; Wedge, S. R.; and Jurgensmeier, J. M. In Proc AACR Ann Meet, volume 67, pages 2999, Los Angeles, CA, May 2007. American Association for Cancer Research Poster 2999 undefined JUN 15 2008 The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis 10.1158/0008-5472.CAN-07-5809 WOS:000256855700034
Inhibition of VEGF-C-induced VEGFR-3 activity and lymphatic endothelial cell function by the tyrosine kinase inhibitor AZD2171 [link]Paper   bibtex   abstract  
  2006 (2)
Production and Purification of Recombinant Human Vascular Endothelial Growth Factor D. Aho, K. Master's thesis, University of Helsinki, Helsinki. Finland, December 2006.
Production and Purification of Recombinant Human Vascular Endothelial Growth Factor D [link]Paper   bibtex   abstract  
Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. Karpanen, T.; Heckman, C. A.; Keskitalo, S.; Jeltsch, M.; Ollila, H.; Neufeld, G.; Tamagnone, L.; and Alitalo, K. FASEB Journal, 20(9): 1462–1472. July 2006.
Functional interaction of VEGF-C and VEGF-D with neuropilin receptors [link]Paper   doi   bibtex   abstract  
  2005 (3)
Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. Baluk, P.; Tammela, T.; Ator, E.; Lyubynska, N.; Achen, M. G.; Hicklin, D. J.; Jeltsch, M.; Petrova, T. V.; Pytowski, B.; Stacker, S. A.; Ylä-Herttuala, S.; Jackson, D. G.; Alitalo, K.; and McDonald, D. M. Journal of Clinical Investigation, 115(2): 247–257. February 2005.
Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation [link]Paper   doi   bibtex   abstract  
Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. He, Y. L.; Rajantie, I.; Pajusola, K.; Jeltsch, M.; Holopainen, T.; Yla-Herttuala, S.; Harding, T.; Jooss, K.; Takahashi, T.; and Alitalo, K. Cancer Research, 65(11): 4739–4746. June 2005. undefined JUN 1 2005 Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels 10.1158/0008-5472.CAN-04-4576 WOS:000229407800033
Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels [link]Paper   bibtex  
Dual role of vascular endothelial growth factor in experimental obliterative bronchiolitis. Krebs, R.; Tikkanen, J. M.; Nykanen, A. I.; Wood, J.; Jeltsch, M.; Yla-Herttuala, S.; Koskinen, P. K.; and Lemstrom, K. B. American Journal of Respiratory and Critical Care Medicine, 171(12): 1421–1429. March 2005. undefined JUN 15 2005 Dual role of vascular endothelial growth factor in experimental obliterative bronchiolitis 10.1164/rccm.200408-1001OC WOS:000229711200016
Dual role of vascular endothelial growth factor in experimental obliterative bronchiolitis [link]Paper   bibtex  
  2004 (1)
Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Karkkainen, M. J.; Haiko, P.; Sainio, K.; Partanen, J.; Taipale, J.; Petrova, T. V.; Jeltsch, M.; Jackson, D. G.; Talikka, M.; Rauvala, H.; Betsholtz, C.; and Alitalo, K. Nature Immunology, 5(1): 74–80. January 2004.
Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins [link]Paper   doi   bibtex  
  2003 (3)
Intrinsic versus micro environmental regulation of lymphatic endothelial cell phenotype and function. Veikkola, T.; Lohela, M.; Ikenberg, K.; Makinen, T.; Korff, T.; Saaristo, A.; Petrova, T.; Jeltsch, M.; Augustin, H. G.; and Alitalo, K. FASEB Journal, 17(14): 2006–2013. November 2003. undefined NOV 2003 Intrinsic versus micro environmental regulation of lymphatic endothelial cell phenotype and function 10.1096/fj.03-0179com WOS:000186961200037
Intrinsic versus micro environmental regulation of lymphatic endothelial cell phenotype and function [link]Paper   bibtex  
Genesis and pathogenesis of lymphatic vessels. Jeltsch, M.; Tammela, T.; Alitalo, K.; and Wilting, J. Cell and Tissue Research, 314(1): 69–84. August 2003. undefined OCT 2003 Genesis and pathogenesis of lymphatic vessels 10.1007/s00441-003-0777-2 WOS:000186541800009
Genesis and pathogenesis of lymphatic vessels [link]Paper   doi   bibtex  
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. Gerhardt, H.; Golding, M.; Fruttiger, M.; Ruhrberg, C.; Lundkvist, A.; Abramsson, A.; Jeltsch, M.; Mitchell, C.; Alitalo, K.; Shima, D.; and Betsholtz, C. Journal of Cell Biology, 161(6): 1163–1177. June 2003. undefined JUN 23 2003 VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia 10.1083/jcb.200302047 WOS:000183827400016
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia [link]Paper   doi   bibtex  
  2002 (1)
Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. Saaristo, A.; Veikkola, T.; Enholm, B.; Hytonen, M.; Arola, J.; Pajusola, K.; Turunen, P.; Jeltsch, M.; Karkkainen, M. J.; Kerjaschki, D.; Bueler, H.; Yla-Herttuala, S.; and Alitalo, K. FASEB Journal, 16(9): 1041–1049. July 2002. undefined JUL 2002 Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes 10.1096/fj.01-1042com WOS:000177813100035
Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes [link]Paper   bibtex  
  2001 (2)
Adenoviral Expression of Vascular Endothelial Growth Factor-C Induces Lymphangiogenesis in the Skin. Enholm, B.; Karpanen, T.; Jeltsch, M.; Kubo, H.; Stenback, F.; Prevo, R.; Jackson, D. G.; Yla-Herttuala, S.; and Alitalo, K. Circulation Research, 88(6): 623–629. March 2001.
Adenoviral Expression of Vascular Endothelial Growth Factor-C Induces Lymphangiogenesis in the Skin [link]Paper   doi   bibtex  
Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice. Veikkola, T.; Jussila, L.; Makinen, T.; Karpanen, T.; Jeltsch, M.; Petrova, T. V.; Kubo, H.; Thurston, G.; McDonald, D. M.; Achen, M. G.; Stacker, S. A.; and Alitalo, K. The EMBO Journal, 20(6): 1223–1231. March 2001.
Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice [link]Paper   doi   bibtex   abstract  
  2000 (2)
VEGF-C adenovirus gene transfer reduces intima formation in rabbits. Hiltunen, M. O.; Laitinen, M.; Turunen, M. P.; Jeltsch, M.; Hartikainen, J.; Rissanen, T. T.; Laukkanen, J.; Niemi, M.; Kossila, M.; Häkkinen, T. P.; Kivelä, A.; Enholm, B.; Mansukoski, H.; Turunen, A.; Alitalo, K.; and ä-Herttuala, S. In Atherosclerosis, volume 151, pages 81, Stockholm, Sweden, June 2000.
VEGF-C adenovirus gene transfer reduces intima formation in rabbits [link]Paper   doi   bibtex  
Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Hiltunen, M. O.; Laitinen, M.; Turunen, M. P.; Jeltsch, M.; Hartikainen, J.; Rissanen, T. T.; Laukkanen, J.; Niemi, M.; Kossila, M.; Hakkinen, T. P.; Kivela, A.; Enholm, B.; Mansukoski, H.; Turunen, A. M.; Alitalo, K.; and Yla-Herttuala, S. Circulation, 102(18): 2262–2268. October 2000. undefined OCT 31 2000 Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta WOS:000090109400027
Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta [link]Paper   bibtex  
  1998 (3)
Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Achen, M. G.; Jeltsch, M.; Kukk, E.; Mäkinen, T.; Vitali, A.; Wilks, A. F.; Alitalo, K.; and Stacker, S. A. Proceedings of the National Academy of Sciences of the United States of America, 95(2): 548–553. January 1998.
Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4) [link]Paper   bibtex   abstract  
Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Olofsson, B.; Korpelainen, E.; Pepper, M. S.; Mandriota, S. J.; Aase, K.; Kumar, V.; Gunji, Y.; Jeltsch, M. M.; Shibuya, M.; Alitalo, K.; and Eriksson, U. Proceedings of the National Academy of Sciences of the United States of America, 95(20): 11709–11714. September 1998.
Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells [link]Paper   doi   bibtex   abstract  
Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. Pepper, M. S.; Mandriota, S. J.; Jeltsch, M.; Kumar, V.; and Alitalo, K. Journal of Cellular Physiology, 177(3): 439–452. December 1998.
Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity [link]Paper   doi   bibtex   abstract  
  1997 (5)
Genomic organization of human and mouse genes for vascular endothelial growth factor C. Chilov, D.; Kukk, E.; Taira, S.; Jeltsch, M.; Kaukonen, J.; Palotie, A.; Joukov, V.; and Alitalo, K. Journal of Biological Chemistry, 272(40): 25176–25183. October 1997. undefined OCT 3 1997 Genomic organization of human and mouse genes for vascular endothelial growth factor C 10.1074/jbc.272.40.25176 WOS:A1997XY97000069
Genomic organization of human and mouse genes for vascular endothelial growth factor C [link]Paper   bibtex  
Hyperplasia of Lymphatic Vessels in VEGF-C Transgenic Mice. Jeltsch, M.; Kaipainen, A.; Joukov, V.; Meng, X.; Lakso, M.; Rauvala, H.; Swartz, M.; Fukumura, D.; Jain, R. K.; and Alitalo, K. Science, 276(5317): 1423–1425. May 1997.
Hyperplasia of Lymphatic Vessels in VEGF-C Transgenic Mice [link]Paper   doi   bibtex   abstract  
Proteolytic processing regulates receptor specificity and activity of VEGF-C. Joukov, V.; Sorsa, T.; Kumar, V.; Jeltsch, M.; Claesson-Welsh, L.; Cao, Y.; Saksela, O.; Kalkkinen, N.; and Alitalo, K. EMBO Journal, 16(13): 3898–3911. July 1997.
Proteolytic processing regulates receptor specificity and activity of VEGF-C [link]Paper   doi   bibtex   abstract  
VEGF and VEGF-C: Specific Induction of Angiogenesis and Lymphangiogenesis in the Differentiated Avian Chorioallantoic Membrane. Oh, S.; Jeltsch, M. M.; Birkenhäger, R.; McCarthy, J. E.; Weich, H. A.; Christ, B.; Alitalo, K.; and Wilting, J. Developmental Biology, 188(1): 96–109. August 1997.
VEGF and VEGF-C: Specific Induction of Angiogenesis and Lymphangiogenesis in the Differentiated Avian Chorioallantoic Membrane [link]Paper   doi   bibtex   abstract   Read more...
Functional Analysis of VEGF-B and VEGF-C. Jeltsch, M. Master's thesis, University of Helsinki, Helsinki, Finland, January 1997.
Functional Analysis of VEGF-B and VEGF-C [link]Paper   bibtex   abstract